
Proceedings for the 2015 EUMETSAT Meteorological Satellite Conference, 

21-25 September 2015, Toulouse, France 

 

A MULTIPLATFORM LAND SURFACE TEMPERATURE DATASET USING 
AATSR, SEVIRI, MTSAT AND GOES-E FOR WACMOS-ET – 

ALGORITHMS AND VALIDATION RESULTS 

 

 

JOÃO P. A. MARTINS(1,2), ANA PIRES(1,2), PHILIPP SCHNEIDER(3), ISABEL F. TRIGO(1,2), CARLOS 
JIMENEZ(4) 

(1) Instituto Português do Mar e da Atmosfera (IPMA), Rua C do Aeroporto, 1749-077 Lisbon, Portugal 
(2) Instituto Dom Luiz, University of Lisbon, IDL, Campo Grande, Ed C1, 1749-016 Lisbon, Portugal 

(3) NILU - Norwegian Institute for Air Research, Kjeller, Norway 
(4) Estellus, Paris, France 

 

In the context of the ESA-funded European project WACMOS-ET, a global dataset of Land Surface 
Temperature (LST) was produced covering the 2005-2007 period. The LST dataset was generated using 
inputs from the Advanced Along-Track Scanning-Radiometer (AATSR), the Spinning Enhanced Visible 
and Infrared Imager (SEVIRI), the Multifunction Transport Satellite (MTSAT) and the Geostationary 
Operational Environmental Satellite - East (GOES-E) imagers. It is the aim of this study to minimize 
discrepancies among LST fields generated from different sensors through the use of a common 
approach for algorithm and auxiliary input data. The radiances from each sensor were processed using 
a common generalized split-window (GSW) algorithm, using data from the 10.8µm and 12.0µm 
channels (except for GOES-E), the same surface emissivity (monthly database from the University of 
Wisconsin-Maddison), and 3-hourly total column water vapour (TCWV) from ECMWF forecasts. Since 
the 12.0 µm channel is not available for GOES-E (GOES-12 onwards), a new mono-channel linear 
regression model was developed to incorporate explicitly emissivity and angle dependencies. An LST 
error estimate is provided for each instrument retrieval, based on the robustness of the model 
coefficients, sensor noise, and both emissivity and TCWV uncertainties. The datasets are provided on 
a sinusoidal grid with 1km spatial resolution for the polar orbiting sensor (AATSR) and with 5km spatial 
resolution for the geostationary sensors. For MTSAT, focus was given on Australia (the region of 
interest for the project), whereas for SEVIRI and GOES-E full disk products were provided. 

The derived LST datasets have been validated against in situ stations and other independent LST 
satellite products (e.g. MODIS).  Preliminary comparisons with ground stations showed that AATSR 
compares better with ground stations than MODIS. As expected, the agreement with in situ 
measurements is significantly better for night time than for day time, for all instruments. Nevertheless, 
all instruments show good performance, with error estimates and accuracy within the expected limits 
for LST products (biases around 0.2-0.3ºC and RMSEs between 1.4ºC and 3.2ºC)  

This dataset was first designed primarily to serve as an input for evapotranspiration models but it will 
be freely available for download at the WACMOS-ET website. The use of this methodology may also 
be applied to future sensors, as it contributes to narrow the sources of uncertainty, favouring the 
optimal use of multi-sensor products. 

1 INTRODUCTION 

Land Surface Temperature (LST) is a key parameter of the surface radiative budget, as it measures the 
available energy at the surface-atmosphere interface. LST is a useful quantity for the scientific community, 
namely for those dealing with weather and climate numerical models. Accurate values of LST are also of 
special interest in a wide range of areas related to land surface processes, including meteorology, hydrology, 
agrometeorology, climatology and environmental studies. LST is very hard to quantify, even with in situ 
measurements, due to its high temporal and spatial variability as well as to strong directional effects. 
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Radiometers are often used over controlled sites with well-known surface properties and these measurements 
closely match those obtained by remote sensing techniques (Trigo et al., 2008). 

The WACMOS-ET project was motivated by the need to develop a predictive capability for terrestrial 
evapotranspiration to support both climate research and operational water management and agriculture. The 
goal was therefore to provide a Reference Input Dataset to derive and validate evapotranspiration (ET) 
estimates, at the global and regional scales, using as consistent as possible remotely sensed datasets as 
inputs (Michel et al., 2015; Miralles et al., 2015). LST is a vital parameter for some ET estimation 
methodologies, and the choice of a common algorithm to process different sensors is a problem of its own, as 
well as the assessment of its quality (Coll and Caselles, 1997; Yu et al., 2008). In this paper, the choice of the 
algorithm and inputs are discussed, and the product accuracy is evaluated based on validation against 
independent data sets. 

2 SENSOR CHARACTERISTICS AND CURRENTLY USED PRODUCTS 

2.1 AATSR 

One of WACMOS-ET main goals is to demonstrate the use of AATSR-derived LST fields for the estimation of 
evapotranspiration. AATSR was one of the 10 Earth-observing instruments on-board ESA’s polar orbiter 
EnviSAT (ENVIronment SATellite), launched in March 2002. Its mission ended in 2012. Although the sensor 
provides a dual-view scan, only the nadir view is used here. The instrument has a zenith view angle (ZVA)  
ranging from 0º to 21.6º (Sòria and Sobrino, 2007), and provides a spatial resolution at nadir of 1 km by 1 km. 
The sensor has 2 bands in the atmospheric window region, centred around 10.9 and 12.1 μm. 

The AATSR was initially designed to provide sea surface temperature (SST) maps, ensuring the production of 
a unique 10 year near-continuous data set at the levels of accuracy required (0.3 K or better). However, AATSR 
data is also being used to obtain LST on a global scale, particularly taking into account that SLSTR onboard 
Sentinel-3 (expected to be launched in 2015; Donlon et al., 2012) will provide continuity of AATSR data and 
LST products. A Level 2 LST product was provided by ESA according to the AATSR Algorithm Theoretical 
Basis Document (Prata, 2002). The operational algorithm requires as inputs the following parameters: 
seasonally-dependent land cover classification, fractional vegetation and precipitable water. The first is based 
on the biomes provided by Dorman and Sellers (1989) in a of 1°×1° grid, while precipitable water data is based 
on the NVAP climatology at 0.5°×0.5° resolution and monthly intervals (Randel et al., 1996). The spatial 
resolution of both fractional cover and precipitable water is currently one of the main problems in the retrieval 
of the in the official product.  

2.2 SEVIRI / MSG 

Meteosat Second Generation (MSG) is a joint project between ESA and the European Organisation for the 
Exploitation of Meteorological Satellites (Eumetsat). The first MSG satellite was launched in August 2002, 
entering into operational service with Eumetsat in early 2004 being then renamed Meteosat-8. The second 
MSG, Meteosat-9, was launched on 21 December 2005 and MSG-3 (Meteosat-10) was launched on 5 July 
2012. Their geostationary orbit is centered over 3.5ºE, 9.5ºE, and 0ºE, respectively. The operational LSA-SAF 
LST based on data from the SEVIRI instrument (Spinning Enhanced Visible and Infrared Imager) onboard the 
MSG platform is available with a 15 minute temporal frequency and at the original satellite spatial resolution 
(3 km sampling distance at the sub-satellite point) and geostationary projection. The data set is available for 
the whole study period (2005-2007). The SEVIRI sensor encompasses 12 channels covering the visible (VIS) 
to the infrared (IR). 

2.3 MTSAT 

MTSAT-2 is the Japanese Meteorological Association (JMA) Multifunction Transport SATellite launched in 
February 2006, following the MTSAT-1R launched one year prior. Both MTSATs are geostationary satellites 
centered at 145ºE and 140ºE, respectively. Their Japanese Advanced Meteorological Imager (JAMI) onboard 
has 2 available split-window channels, centred around 10.8 μm and 12.0 μm, based on which the LST is 
computed, and which have a spatial resolution of 4 x 4 km and a temporal resolution of 3 hours. MTSAT data 
were processed for an area covering Australia and for a period covering June 2006-December 2007.  
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2.4 GOES-E 

GOES-12 (Geostationary Operational Environmental Satellite) was launched in July 2001. In April 2003, 
GOES-12 became GOES-East at 75ºW, and was decommissioned in April 2010. Its mission ended August 
2013. GOES-12 was the last of the third generation GOES satellites. In contrast to SEVIRI, AATSR and 
MTSAT, the imager onboard the GOES satellites (from GOES-12 onwards, 
http://www.oso.noaa.gov/goes/goes-calibration/change-channels.htm) does not include two thermal infrared 
channels in the thermal atmospheric window of the spectrum. Alternative methodologies to the split-window 
algorithms must then be applied in order to obtain LST, as detailed in section 3.1. 

3 ALGORITHMS 

3.1 Description of the candidate algorithms 

LST is estimated here using linear regression methods (generalized split-window and mono-window 
algorithms) with surface emissivity as an explicit input. To derive formulations for the linear regressions, the 
radiative transfer equation is used as a starting point (e.g. Li et al., 2013): 

 𝐿𝑖 = 𝐵(𝑇𝑏,𝑖) = 𝜖𝑖𝐵𝑖(𝑇𝑠𝑓𝑐)𝜏𝑖 + 𝐿𝑎𝑡𝑚,𝑖
↑ + (1 − 𝜖𝑖)𝐿𝑎𝑡𝑚,𝑖

↓ 𝜏𝑖 (1) 

Where 𝐿𝑖 is the monochromatic radiance at the sensor level, 𝐵(𝑇𝑏,𝑖) and 𝐵𝑖(𝑇𝑠𝑓𝑐) are the radiances emitted by 

blackbodies at temperatures 𝑇𝑏 (brightness temperature) and 𝑇𝑠𝑓𝑐 (surface temperature), 𝜖𝑖 is the 

monochromatic emissivity, 𝜏𝑖 is the monochromatic atmospheric transmissivity, and 𝐿𝑎𝑡𝑚,𝑖
↑  and 𝐿𝑎𝑡𝑚,𝑖

↓  are the 

upward and downward radiances emitted by the atmosphere. It is possible to derive formulations for linear 
regression methods expanding some of the terms of equation (1) using Taylor series. Split-window algorithms 
use these derived expressions for both channels in the atmospheric window. These methods have advantages 
with respect to other methods such as the so-called “physical” algorithms, which solve the radiative transfer 
equation directly, thus being much less computationally efficient. Since it is possible to use different 
approximations, there are a few different algorithms documented in the literature. Yu et al. (2008) gathered the 
most commonly used algorithms that retain explicit emissivity dependence and compared their performance 
(Table 1).  

No Formula Reference(s) 

1 𝑇𝑠 = 𝐶 + (𝐴1 + 𝐴2

1 − 𝜖

𝜖
+ 𝐴3

Δ𝜖

𝜖2
)

𝑇11 + 𝑇12

2
+ (𝐵1 + 𝐵2

1 − 𝜖

𝜖
+ 𝐵3

Δ𝜖

𝜖2
)

𝑇11 − 𝑇12

2
 (Freitas et al., 2010; Wan and Dozier, 1996)  

2 𝑇𝑆 = 𝐶 + 𝐴1

𝑇11

𝜖
+ 𝐴2

𝑇12

𝜖
+ 𝐴3

1 − 𝜖

𝜖
 (Caselles et al., 1997; Prata and Platt, 1991) 

3 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜖) + 𝐴4Δ𝜖 (Ulivieri et al., 1994) 

4 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3

1 − 𝜖

𝜖
+ 𝐴4

Δ𝜖

𝜖2
 (Vidal, 1991) 

5 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)(1 − 𝜖11) + 𝐴4𝑇12Δ𝜖 (Price, 1984) 

6 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3𝜖 (Ulivieri and Cannizzaro, 1985) 

7 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3𝜖 + 𝐴4

Δ𝜖

𝜖
 (Sobrino et al., 1994)  

8 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(1 − 𝜖11) + 𝐴4Δ𝜖 (Coll et al., 1997) 

9 𝑇𝑆 = 𝐶 + 𝐴1𝑇11 + 𝐴2(𝑇11 − 𝑇12) + 𝐴3(𝑇11 − 𝑇12)(𝑇11 − 𝑇12) + 𝐴4(1 − 𝜖11) + 𝐴5Δ𝜖 (Sobrino et al., 1993) 

Table 1 - List of split-window algorithms tested in this work and their respective references. 𝑻𝒔 denotes LST; 𝑪, 𝑨𝟏, 𝑨𝟐, 𝑨𝟑, 𝑩𝟏, 
𝑩𝟐, 𝑩𝟑 are the regression coefficients, 𝑻𝟏𝟏 and 𝑻𝟏𝟐 are the brightness temperatures in the IR 108 and IR 120 channels, 𝝐𝟏𝟏 and 

𝝐𝟏𝟐 their emissivities and 𝝐 the average of both emissivities. 

In the same study, the inclusion of a path correction term with the form 𝐷 (𝑇11 − 𝑇12)(sec(𝑍𝑉𝐴) − 1), which 
avoids calibrating the model per classes of ZVA, was also tested. The algorithm choice in this study is based 
on the methodology by Yu et al. (2008), but it uses different calibration and validation databases (see section 
3.2). For AATSR, SEVIRI, and MTSAT the single best split-window algorithm was chosen based on a 
comprehensive uncertainty analysis (see section 3.3). For GOES-E, a single mono-channel algorithm was 
used (Duguay-Tetzlaff et al., 2015): 
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 𝑇𝑠 = 𝐴 
𝑇11

𝜖11
+ 𝐵 

1

𝜖11
+ 𝐶(sec (𝑍𝑉𝐴) − 1) + D  (2) 

3.2 Calibration and Verification Database 

The split-window coefficients are trained and verified for a wide range of atmospheric and surface conditions 
and viewing geometries, using simulations by the MODerate spectral resolution atmospheric TRANSmittance 
model (MODTRAN; Berk et al., 1999) for more than 15700 clear sky profiles from the database prepared by 
Borbas et al. (2005), referred to hereafter as SeeBor. The algorithm (MODTRAN4) provides a useful tool for 

quantifying the top-of-atmosphere spectral radiance, 𝐿𝜈, which is done for the bands corresponding to IR 108 
and IR 120 channels, with a spectral resolution of 1 cm-1. The integration of 𝐿𝜈 weighted by the ith channel 

response function, 𝜙𝑖,𝜈, within the band limits 𝜈1 and 𝜈2, provides its effective radiance: 

 𝐿𝑖 =
∫ 𝜙𝑖,𝜈𝐿𝜈𝑑𝜈

𝜈𝑖,2
𝜈𝑖,1

∫ 𝜙𝑖,𝜈𝑑𝜈
𝜈𝑖,2

𝜈𝑖,1

  (3) 

The radiances are converted to equivalent blackbody brightness temperatures using the inverse of the Planck 
function: 

 
𝑇𝑏,𝑖 =

ℎ𝑐𝜈𝑖

𝑘 log(
2ℎ𝑐2𝜈𝑖

3

𝐿𝑖
+1)

  
(4) 

where ℎ is the Planck constant, 𝑐 is the speed of light an 𝑘 is the Boltzmann constant. The SeeBor database 
includes the necessary information about atmospheric temperature and humidity, surface emissivity, skin 
temperature, pressure, total column water vapour and land cover and elevation. The simulations took into 
account the respective channel response function. For each profile, a random ZVA is assumed; for AATSR 
the angle interval is within the range of the nadir field-of-view (0º - 21.6º), while for the geostationary satellites 
the interval includes angles up to 75º for MTSAT and SEVIRI, and 60º for GOES, comprising most of the disk. 
A subset of this dataset was used to produce a calibration database, with 80 profiles geographically well 
distributed and with a uniform total column water vapour (TCWV) distribution in order to cover a wide range of 
atmospheric conditions. For each of these profiles, the skin temperature was perturbed by taking the 10 m 
temperature and adding perturbations in the range [-15 K 15 K] in 5 K intervals. Each of these cases was 
modelled using the following ZVA intervals: in the range 0-22º in 1º intervals for AATSR; in the range 0-75º in 
5º intervals for MTSAT and SEVIRI, and 0-60º in 5º intervals for GOES. The emissivity of the IR 12.0 channel 
was set to vary between 0.935 and 0.995 in 0.015 intervals. For each of these values, the IR 10.8 emissivity 
was calculated by adding perturbations in the range [-0.03 0.024] in 0.006 intervals (excluding cases where it 
exceeds 1). In this way, the robustness of the database can be ensured with respect to atmospheric conditions, 
differences between skin and 10 m temperature, ZVA and also to the range of expected emissivities of the 
split-window channels. The remaining profiles in the database were used for validation of the calibrated 
coefficients, using random ZVAs, as described above. 

3.3 Uncertainty analysis and model performance 

In order to decide which split-window algorithm to use (see Table 1), a combination of algorithm performance 
and an uncertainty analysis was used. To evaluate model performance, the modelled values of the verification 
database were compared to the true value, also given by SeeBor (Figure 1). In that assessment, all the inputs 
were assumed as free of any uncertainty. We also compared the inclusion of the path correction term against 
simulations that used different coefficients for classes of ZVA, and concluded that its impact on algorithm 
performance is negligible (not shown). Therefore, a formulation using the path correction term is preferred as 
it is expected to provide smoother resulting LST fields. All algorithms show that larger errors occur when total 
column water vapor increases. There are a few models with similar performances, the notable exceptions 
being algorithms 2, 5 and 6 (see Table 1), with larger biases and RMSEs. The algorithm with the lowest bias 
and RMSE was algorithm 1. 

The sensitivity to all the inputs was analysed in detail for all four sensors, but only a brief description focusing 
on AATSR will be given here, for the sake of brevity. Sensor noise errors were inferred by perturbing the 
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brightness temperatures obtained for each channel, and for each of the MODTRAN simulations of validation 
database, with values with a standard deviation corresponding to the noise-equivalent temperature reported 
for each channel. The perturbed values were then used to estimate LST with each of the algorithms and 
compared to the unperturbed estimates. The results show that errors tend to grow for cases with larger TCWV 
and ZVA, and all models show the same type of behavior. 

 

Figure 1 - Validation results using a path correction term, for AATSR. Each bar is a boxplot of the differences between the LST 
in SeeBor and the corresponding GSW result, grouped by TCWV class. Also shown are the bias and RMSE for each model. 

To take this into account, perturbation values of the original emissivity values were varied as follows: for 0.8 <
𝜖 ≤ 0.95, gaussian perturbations in the range of ±0.016; for 0.95 < 𝜖 ≤ 0.98, in the range of ±0.012 and for 

0.98 < 𝜖 ≤ 1, perturbations in the range of ±0.007. In the case of emissivity the comparison of perturbed vs. 
unperturbed LSTs revealed that larger discrepancies occur for lower values of TCWV. This effect may be 
explained using equation (1): TCWV decreases the atmospheric transmissivity and increases atmospheric 

emission terms. So the lower the TCWV, the higher is the value of 𝜏 and the lower the terms 𝐿𝑎𝑡𝑚,𝑖
↑  and 𝐿𝑎𝑡𝑚,𝑖

↓ . 

Therefore the value of the first term (surface emission) is amplified if TCWV is low, and the value of the last 
term (surface reflection of atmospheric emission) is reduced in the same conditions. Two of the tested 
algorithms are less sensitive to this effect (2 and 6).  

In the case of the uncertainty due to TCWV, the error comes from the fact that an incorrect set of coefficients 
might be used. The error that is incurred by using the wrong set of coefficients is combined with the probability 
of that event, which is estimated by comparing ECMWF forecast fields to the corresponding analysis. In 
general, the ECMWF forecast fields do not fail by more than one class of TCWV, and only for very high values 
does the probability of using the neighboring class exceeds 30%. In general, errors due to TCWV do not 
exceed 0.20 K except for the last class (5.25 to 6 cm), which takes values of about 0.5 K. 

The total uncertainty is obtained as follows: 

 𝜎𝑇𝑜𝑡𝑎𝑙 = √𝜎𝑇𝑏
2 + 𝜎𝜖

2 + 𝜎𝑇𝐶𝑊𝑉
2 + 𝜎𝑚𝑜𝑑𝑒𝑙

2 , (5) 
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where 𝜎𝑇𝑏, 𝜎𝜖, 𝜎𝑇𝐶𝑊𝑉 and 𝜎𝑚𝑜𝑑𝑒𝑙 are the uncertainties due to sensor noise, emissivity database, TCWV 
forecasts and regression model, respectively. All algorithms show a similar behaviour of increasing  uncertainty 
with TCWV (except algorithms 2, 5 and 6 which had already shown poor regression performance). Although 
not shown here, it is thus very difficult to choose which of those is the best. The choice of the algorithm was 
then mainly based on the model performance (Figure 1): the model that showed the best performance is the 
one by Wan and Dozier (1996), with a path correction term:  

 
𝑇𝑠 = 𝐶 + (𝐴1 + 𝐴2

1 − 𝜖

𝜖
+ 𝐴3

Δ𝜖

𝜖2
)

𝑇11 + 𝑇12

2
 

              + (𝐵1 + 𝐵2

1 − 𝜖

𝜖
+ 𝐵3

Δ𝜖

𝜖2
)

𝑇11 − 𝑇12

2
+  𝐷 (𝑇11 − 𝑇12 )(𝑠𝑒𝑐(𝑍𝑉𝐴) − 1) 

(6) 

The magnitude of errors associated to each of the sources described above, using the selected algorithm, and 
for AATSR, is shown in Figure 2. For small TCWV, the total error is mainly modulated by the emissivity 
contribution, whereas for larger values, the model error is the main source. The total uncertainty varies between 
0.5 and 2.3 K. It is worth noting that for the geostationary platforms, the magnitude of the uncertainties is larger 
because the optical path has larger ranges, as the ZVA may reach as high as 75º. In those cases the error is 
roughly independent of ZVA, for ZVAs<50º but increases rapidly for higher angles. Cases for which the 
prescribed error surpasses 4K are not processed. 

 

Figure 2 – LST uncertainty (K) as a function of TCWV (cm) for the chosen algorithm [Equation (6)] (a) contribution of model (in 
red), sensor noise (green) and TCWV forecasts (blue) (b) contribution of emissivity, separated by classes of emissivity (low, 

intermediate and high emissivity) (c) sum of all contributions [equation (5)] 

4 PROCESSING ASPECTS 

The previous section describes how to calibrate the multiple regression model that is used here to convert the 
radiances from each sensor to LST. It further shows how the value of the error that is assigned to each pixel 
was computed, depending on its emissivity, view angle and TCWV. The TCWV was retrieved from ECMWF 
3-hourly global fields at 0.75º resolution: the 0h, 6h, 12h and 18UTC were analysis, the 3h and 9h are the 
steps 15 and 21 from the T-12 forecast and the 15h and 21h are the steps 15 and 21 from the T-0 forecast. 
For each pixel, the time of retrieval is read and the TCWV is interpolated in space and time for the pixel location. 
Spectral emissivity was retrieved from monthly files available at 0.05º resolution at the Global Infrared Land 
Surface Emissivity Database from the Univ. of Wisconsin (Seemann et al., 2008). Solar angles are calculated 
using spherical geometry routines available from the LSA-SAF processing chain and adapted for each of the 
sensors (except AATSR which contained all the necessary angles in its L1 files). 

Since all LST fields are calculated for cloud-free pixels, a cloud mask is required. In the case of AATSR, the 
L1 radiances include an operational cloud mask, so the user is referred to the AATSR documentation for a 
complete description of their cloud mask algorithms (Závody et al., 2000). For the geostationary sensors, the 
algorithm used is the one adapted from the NWC-SAF set of algorithms. Basically the algorithm consists of a 
comparison of the IR radiances and VIS reflectances of each scene with background values. If the differences 
are higher than given thresholds, the pixel is considered as cloudy. Additional spatial texture tests are also 
applied to filter spurious results. Further details on the cloud mask can be found here: 
http://land.copernicus.eu/global/sites/default/files/products/GIOGL1_ATBD_Cloud_I1.00.pdf. 

http://land.copernicus.eu/global/sites/default/files/products/GIOGL1_ATBD_Cloud_I1.00.pdf


7 

 

5 VALIDATION 

The accuracy of the WACMOS-ET LST product was evaluated using 1) in-situ data and 2) intercomparison 
against other independent datasets. Again, for the sake of brevity and consistency with the previous section, 
focus will be given to the AATSR validation. An extensive analysis can be found in the project official validation 
report (available to download here http://aramis.obspm.fr/~jimenez/Docs/WACMOSET/ 
WACMOSET_WP2130_approved.pdf):  

5.1 In-situ data 

Very few stations dedicated to LST validation exist. For the WACMOS-ET years only data from Gobabeb and 
Evora stations could be used. Gobabeb (22.33° S, 15.03° E) is located on large gravel plains (>900 km2) at 
an altitude of 408 m; these plains are sparsely covered by desiccated grass. Some non-continuous 
measurements were available for the WACMOS-ET period (in December 2007), since the station only started 
its nominal operations in January 2008. Evora (38.54° N, 8.00° W) is part of the global flux network of 
measurements (Fluxnet) as it is composed of sparse oak tree canopy (30-40 trees/ha) and a grassland soil. 
The station was not fully operational at the WACMOS-ET period, but some data was available for November 
and December 2007.  

Therefore data from both the Surface Radiation (SURFRAD, see locations at http://www.esrl.noaa.gov/ 
gmd/grad/surfrad/sitepage.html) and from the Atmospheric Radiation Measurement program (ARM) were used 
to estimate in-situ LST. It should be noted that these networks were not specifically designed to measure LST, 
which is why some stations do not exhibit homogeneous land cover at the scale of the satellite footprint, thus 
increasing the uncertainty of the emissivity values used in the estimation. In situ LST is estimated from the 
broadband longwave flux measurements through the equation: 

 𝐿𝑆𝑇 = (
𝐿𝑊𝑜𝑢𝑡−(1−𝜖)𝐿𝑊𝑖𝑛

𝜖𝜎
)

1

4
, (5) 

where 𝐿𝑊𝑜𝑢𝑡 and 𝐿𝑊𝑖𝑛 are the upwelling and downwelling longwave radiation, respectively, 𝜖 is the broadband 
emissivity of the Earth’s surface in the spectral range of measurements and 𝜎 is the Stefan Boltzmann constant 

(5.6704 × 10−8 𝑊 𝑚−2 𝐾−4). Broadband emissivity was estimated from the same global database used for the 
LST production (Seemann et al., 2008), using the following equation (Ogawa et al., 2003; Wang, 2005): 

 𝜖 = 𝑎𝜖8.5 + 𝑏𝜖11 + 𝑐𝜖12, (5) 

where 𝜖8.5, 𝜖11 and 𝜖12 are the narrowband emissivities at 8.5 µm, 11 µm, and 12 µm, respectively. The 

coefficients a, b, and c were found to be 0.2122, 0.3859, and 0.4029 respectively (Wang, 2005).  

A comparison of AATSR LST with matchup data from the different in-situ stations during night time is shown 
in Figure 3. It can be observed that the majority of matchups follows the 1:1 line at all sites, but also that at 
most sites frequent negative outliers occur. These are the characteristics of failures of the used operational L1 
cloud mask. Another indicator for this behavior is that a site located in the Nevada desert (Desert Rock), which 
sees relatively few clouds has a much smaller number of negative outliers than the typically more cloudy sites 
in the mid-latitudes (e.g. the Bondville site). During the day, those issues are not so serious because the cloud 
masking algorithm relies on extra information from the visible channels (not shown). 

Because the cloud masking issue resulted in an unusually high number of outliers which in turn masked the 
true accuracy of the AATSR-based LST retrievals, a very simple filtering scheme was used to eliminate the 
most extreme outliers caused by an inefficient cloud masking procedure. This scheme evaluated the difference 
between in situ LST and AATSR LST and removed the matchups where this difference was at the same time 
negative and its value greater than two standard deviations from the mean. While this is a relatively crude 
method, it is effective here in the sense that it becomes possible to derive summary statistics, which are more 
representative of the actual accuracy of the AATSR LST product once the night time cloud masking issues are 
taken care of (Table 2). Although there is a small increase of the bias, both for the day time and in the night 
time, the RMSE becomes much lower, especially at night. Also shown are the respective values for MODIS, 
which show a pronounced negative bias and a much higher RMSE at night. 
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Figure 3 - Scatter plots of AATSR-derived nighttime LST against LST computed from observations at in situ stations 

 Night Day 

 
WACMOS 

AATSR 

WACMOS 
AATSR  

(without cloud 
outliers) 

MODIS  
(for reference) 

WACMOS 
AATSR 

WACMOS 
AATSR  

(without cloud 
outliers) 

MODIS  
(for reference) 

Bias (K) 0.0 0.3 -3.0 1.0 1.4 -1.5 

RMSE (K) 2.1 1.3 3.1 3.8 3.2 3.4 

Table 2 – Summary statistics for night and daytime comparisons of the original AATSR, AATSR with cloud-filtered scheme and 
MODIS with in situ stations. 

To further investigate the cloud masking issue, AATSR was compared to the corresponding product from the 
GlobTemperature project (http://www.globtemperature.info/), which uses the algorithm of Prata (2002) but is 
improved in terms of the spatial resolution of the auxiliary datasets such as fractional vegetation cover and 
global biome distribution, and uses an improved cloud mask. However, in order to make the summary statistics 
comparable, that cloud mask was replaced by the one used in WACMOS AATSR. The results in Table 3 show 
that the WACMOS dataset outperforms GlobTemperature especially during day time, with a RMSE reduction 
of more than 0.5K. During the night the improvements are more evident in terms of the bias, which is about 
0.1K lower for WACMOS. 

Product Bias StdDev RMSE 

WACMOS Night 0.06 2.26 2.25 

GlobTemp Night 0.15 2.27 2.27 

WACMOS Day 1.17 3.25 3.45 

GlobTemp Day 1.20 3.81 3.99 

Table 3 – Overall summary statistics of all nighttime and daytime matchups for 2007 at all in situ sites. Note that the same 
cloudmask was used for both products (same used in WACMOS-ET). 

The validation of the geostationary sensors was challenging. MTSAT does not have any usable data from in 
situ stations on its disk, as the only station in Darwin (Australia) is located too close to the ocean. In addition, 
the site is in a very complex urban landscape and not well suited for LST validation. Comparisons with MODIS 
revealed an overestimation of 3.6ºC by MTSAT relative to MODIS (in terms of bias). LST from GOES-E was 
evaluated against in situ observations from SURFRAD stations. The results indicate a very good 
correspondence with an average bias of 0.21 °C. The RMSE, as an overall representation of error, was 2.56 
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°C. These intercomparisons are complicated by the fact that the observation times are sometimes significantly 
different as well as the fact that the MODIS LSTs were shown to be systematically cooler than in situ 
estimations by 1-2 °C. Regarding SEVIRI, no validation effort was not made so far. Inter-sensor comparisons 
will be made between the derived AATSR LST and the geostationary products.  

6 CONCLUSIONS 

The comparison of LST data from different remote sensors is generally a difficult task as each sensor uses its 
own algorithm and ancillary inputs, apart from the differences in the sensor itself, viewing geometries and 
observation times. The development of the WACMOS-ET LST dataset allowed the inter-comparison of LST 
data retrieved by different sensors but using the same inputs and similar algorithms (notable exception for 
GOES-E due to the unavailability of one of the split-window channels), thus reducing the sources of 
discrepancy between datasets. 

The best retrieval algorithm was chosen from a list of 9 commonly used algorithms documented in the literature. 
The main criterion was to pick the best comparison to the “true” LST, from a validation database of over 15000 
atmospheric profiles, viewing geometries and surface conditions. From the list of tested models, only three 
had poor uncertainty propagation performance and the others had similar performance, with uncertainties 
growing with TCWV. The major source of uncertainty is the surface emissivity. In fact, comparisons of 
emissivity databases reveal large discrepancies, especially over semi-arid and desert areas. These 
discrepancies naturally translate in differences in the retrieved LST, depending on the database that is used. 

The comparisons of the AATSR LST with in-situ data showed very good agreement, especially when cloud 
contaminated pixels were removed with a simple statistical scheme. It was shown that the dataset frequently 
outperforms reference LST datasets such as MODIS and GlobTemperature (discussed the project validation 
report).  

Furthermore, although not extensively discussed here, the validation of the geostationary datasets was more 
challenging due to 1) the unavailability of dedicated and non-dedicated LST ground stations (especially for the 
MTSAT disk) and 2) the sometimes large time discrepancy between sensors (especially for GOES-E). 
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